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ABSTRACT

We propose a revised age calibration of the Messinian salinity

crisis onset in the Mediterranean at 5.971 Ma based on the

recognition of an extra gypsum cycle in the transitional inter-

val of the Perales section (Sorbas basin, Spain) and the revi-

sion of the magnetostratigraphy of the Monticino section

(Vena del Gesso basin, Italy). This age re-calibration allows to

state more accurately that: (i) the interval encompassing the

MSC-onset is continuous, thus ruling out any erosional feature

or stratigraphic hiatus related to a major sea-level fall affect-

ing the Mediterranean; (ii) the first gypsum was deposited

during the summer insolation peak at 5.969 Ma associated

with an eccentricity minimum and roughly coincident with

glacial stage TG32; (iii) the MSC-onset was preconditioned by

the tectonically-driven reduction of the hydrological

exchanges with the Atlantic Ocean and finally triggered by

glacial conditions in the northern hemisphere and by

arid conditions in northern Africa.
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Introduction

The Messinian salinity crisis (MSC)
onset has been dated at 5.96 �
0.02 Ma (Krijgsman et al., 1999a),
based on the high-resolution cyclo-
stratigraphic framework recon-
structed for the pre-MSC
Mediterranean successions, with sedi-
mentary cycles controlled by astro-
nomical forcing (Krijgsman et al.,
1995, 2004; Hilgen and Krijgsman,
1999; Sierro et al., 2001). This strati-
graphic framework could be only ten-
tatively extended into the MSC
interval due to the absence of clear
biomagnetostratigraphic events
(Krijgsman et al., 2001). Recently,
detailed sedimentologic and strati-
graphic studies on the Messinian
evaporites as well as in continuous
open-marine sections in the Atlantic
margin of Morocco, led to the recon-
struction of a robust high-resolution
stratigraphic framework for the evap-
orite-bearing successions (van der
Laan et al., 2006; Hilgen et al., 2007;
Manzi et al., 2009; Lugli et al., 2010).

The recentmost MSC chronostrati-
graphic framework (Fig. 1) is mainly
based on a thorough revision of the

“Lower Evaporites” (LE) and their
time-equivalent deposits (CIESM –
Commission Internationale pour
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Fig. 1 The CIESM - Commission Internationale pour l’Exploration Scientifique de
la mer M�editerran�ee (2008) Messinian salinity crisis stratigraphic framework (modi-
fied after; Roveri et al., 2008a,b; Manzi et al., 2011) showing the 5 key-surfaces
used in the definition of the MSC stages. PLG, Primary Lower Gypsum; RLG,
Resedimented Lower Gypsum; UG, Upper Gypsum; CdB1, CdB2, CdB3, Calcare
di base types (Manzi et al., 2011); MSC-onset, onset of the Messinian salinity cri-
sis; MES, Messinian erosional surface (Lofi et al., 2005); age of the base of Plio-
cene after Van Couvering et al., 2000.
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stone layer (section E) to small, isolated gypsum cauliflowers (section D) or domes (sections C and C0) and to a 1 m-thick
gypsum bed separated from the overlying one by a few cm-thick shale interval (from section B to section A).
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l’Exploration Scientifique de la mer
M�editerran�ee, 2008; Roveri et al.,
2008a; Manzi et al., 2009, 2011). It
envisages a two-step/three stages pro-
gression of the MSC, inspired and
substantially modified after Clauzon
et al. (1996). During stage 1, thick
primary shallow-water evaporites
(Primary Lower Gypsum, PLG;
Roveri et al., 2008a) accumulated in
semi-enclosed marginal basins,
whereas in the deep settings only eu-
xinic shale and dolostone accumu-

lated (Manzi et al., 2007, 2011;
DeLange and Krijgsman, 2010; Dela
Pierre et al., 2011). Since 5.60 Ma
(stage 2) an acceleration of tectonic
activity, likely coupled with glacial
conditions (TG12 and TG14), caused
the large-scale erosion of the PLG
and their en-mass resedimentation in
basin lows to form the RLG unit
(Resedimented Lower Gypsum;
2008b) which also includes huge vol-
umes of primary halite and records
the MSC acme.

During stage 3 the Mediterranean
was characterized by a peculiar pal-
aeoceanographic setting with a
diluted superficial water-mass hosting
hypohaline Paratethyan faunal
assemblages; the local and periodic
gypsum precipitation (“Upper Evap-
orites”; UE) suggests the mainte-
nance of marine connections, albeit
reduced, with the global ocean (Man-
zi et al., 2009).
The 5.96 � 0.02 Ma age for the

MSC-onset is based on the lithological
transition from pre-evaporitic
sapropel-marl-diatomite successions
to the base of the LE (Krijgsman
et al., 1999a, 2004; Sierro et al., 2001).
This transition takes place at the same
sedimentary cycle at the Molinos/Pe-
rales (Spain), Falconara (Sicily) and
Metochia (Greece) (Krijgsman et al.,
1999a). However, detailed investiga-
tions on the LE showed that this
transition is more complex than com-
monly thought, and strongly differs
between deep and marginal settings
(Roveri et al., 2008a; Manzi et al.,
2009, 2011). Molinos/Perales is the
only section clearly showing the PLG
base; the other two sections grade into
evaporitic carbonates/dolostones that
cannot be easily correlated to time-
equivalent PLG gypsum beds.
Monticino (Vena del Gesso basin,

Italy) is another well-studied MSC
section where a complete integrated-
stratigraphic study of the transition
interval to the PLG unit was
performed (Marabini and Poluzzi,
1977; Marabini and Vai, 1988;
Krijgsman et al., 1999b).
Following the recent revisitation of

the PLG evaporites (Lugli et al.,
2008, 2010), we propose here a new
stratigraphic calibration of the MSC-
onset, improving the pioneering stud-
ies of Sierro et al. (2001). Based on
new detailed observations of the
transition interval between the pre-
evaporites and the PLG in the
Perales and Monticino sections, we
present a more precise calibration of
the interval preceding the MSC to
the astronomical target curves that:
(i) reduces stratigraphic and chrono-
logic uncertainties in the position of
the MSC-onset; (ii) helps understand-
ing the global processes (climatic
trend, glaciations, global sea-level
fluctuations) associated with the
deposition of the gypsum beds and
their stacking pattern.
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Perales section, Sorbas basin
(Betic Cordillera, Spain)

The Perales section (Fig. 2), located
in the central portion of the Sorbas
basin (SB), includes up to 55 litho-
logical cycles in the Abad Forma-
tion, recorded by the rhythmic
deposition of homogeneous marls,
more indurated opal-rich carbonatic
layers, sapropels and diatomites,
between the Tortonian-Messinian
boundary (7.251 Ma; Hilgen et al.,
2000) and the base of the Yesares
Fm corresponding with the MSC-
onset (5.96 � 0.02; Krijgsman et al.,
1999a). A high-resolution integrated

stratigraphic study resulted in the
recognition of 18 planktonic forami-
nifera bioevents, which were shown
to be synchronous throughout the
Mediterranean by means of cyclo-
stratigraphic bed-to-bed correlations
(Sierro et al., 2001). Paleomagnetic
investigations revealed the presence
of three components of magnetic
remanence, a low-temperature
(100–240 °C) normally directed com-
ponent, an intermediate (240–420 °C)
dual polarity component, and a high-
temperature (>420 °C) normally
directed component. The intermedi-
ate component was interpreted as the
primary component, although reli-

able directions were difficult to
obtain because of partial overprints
probably caused by delayed acquisi-
tion. Polarities were generally more
straightforward and the N/R reversal
boundary corresponding to the base
of the Gilbert Chron (C3r(y)) could
be located between the homogeneous
marls of cycle UA31 and the sapro-
pel of UA32, i.e. three precessional
cycles below the transitional interval
to the Yesares Fm (Krijgsman et al.,
1999a; Sierro et al., 2001).
In the badlands facing Los Perales,

an additional, highly discontinuous
gypsum bed has been observed
within the “transitional interval” at
the Abad-Yesares boundary (Sierro
et al., 2001), below the lowermost
continuous gypsum bed, usually con-
sidered as the first PLG cycle
(Fig. 2). This bed shows rapid lateral
facies and thickness transitions
(Fig. 3) related to the distribution of
hyper-saturated and oxygenated con-
ditions within the basin controlling
where gypsum may form (DeLange
and Krijgsman, 2010; Lugli et al.,
2010).
Thus, in agreement with the strati-

graphic correlation proposed between
“Los Molinos” and “Los Yesos” sec-
tions (Roveri et al., 2009; Lugli
et al., 2010), the stratigraphic frame-
work of Sierro et al. (2001) can be
improved as follows: the “transi-
tional to gypsum” interval contains
the “true” 1st PLG cycle whereas the
formerly considered “first evaporitic
layer” actually corresponds to the
2nd PLG cycle.

Monticino section, Vena del Gesso
basin (Northern Apennines, Italy)

The Monticino section was first stud-
ied by Marabini and Poluzzi (1977)
who described the presence of up to
six carbonate beds, named “Calcare
di Base”, at the transition between
the pre-MSC euxinic shales and the
selenite beds of the Gessoso-solfifera
Formation. The Monticino and the
Rio Albonello sections (Marabini
and Poluzzi, 1977) are actually the
only sections of the Vena del Gesso
basin (VDGB) showing the strati-
graphic interval encompassing the
MSC-onset. Afterwards, the studies
mainly focused on the Messinian ver-
tebrate assemblages recovered from
sedimentary fillings of some paleok-
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arst cavities formed during the phase
of tectonic activity responsible for
the emersion of this area and the for-
mation of the so called intra-Messini-
an unconformity at the acme of the
MSC (Vai, 1988). This important
erosional surface, separating MSC
stage 1 and 2 and corresponding to
the Messinian erosional surface
(MES, also equivalent to the Mar-
ginal erosional surface of Lofi et al.,
2011), is associated with an important
phase of erosion and dismantlement
of the PLG in the VDGB and to its
subsequent resedimentation in the
adjacent deeper basins (Roveri et al.,
2001, 2003; Manzi et al., 2005).
The Monticino section was also

studied for integrated stratigraphic
purposes (Krijgsman et al., 1999b;
Roveri et al., 2006), although major
tectonic complications (e.g. shear-
planes) in the pre-evaporitic succes-
sion hampered a detailed correlation
to the astronomical target curve.
Based on the analysis of 11 paleo-
magnetic samples from the upper-

most pre-evaporitic succession (in the
4 m below the base of the PLG unit;
Fig. 4) Krijgsman et al. (1999b)
placed the N/R base of the Gilbert
chron between the 2nd and the 4th
limestone beds (Calcare di Base; Vai,
1988).
The natural remanent magnetiza-

tion (NRM) of the Monticino sam-
ples is composed of two different
components: a low-temperature
(100–240 °C) normal polarity com-
ponent, interpreted as a subrecent
viscous overprint, and a high temper-
ature component of dual polarity,
gradually removed up to 360 °C.
Further heating created new mag-
netic minerals and resulted in random
directions. The high-temperature
component was considered as the
(near-) primary component ChRM
component (Krijgsman et al., 1999b).
A detailed re-investigation of the

earlier palaeomagnetic analyses com-
prising the transitional interval of
the “Calcare di Base” unit shows
that cycles I and II are of normal

polarity and that cycles IV, V of
reversed polarity (Figs. 4 and 5).
The intermediate interval between
cycles II and IV (see samples LIM
3.2. 4.2 and 5.2 in Fig. 5) can best
be qualified of “mixed polarity”,
probably related to a significant
overlap of a reversed and normal
component. Krijgsman et al. (1999b)
placed the N/R base of the Gilbert
chron between the 2nd and the 4th

limestone beds (Calcare di Base;
Vai, 1988), based on the assumption
that the mixed polarity was the
result of a secondary normal over-
print in combination with a primary
reversed signal. In the mixed polar-
ity interval, the high-temperature
component is, however, not clearly
resolved. Similarly to what have
been observed in many other polar-
ity transitions, mixed polarities can
also result from delayed acquisition
processes resetting part of the paleo-
magnetic signal (Vasiliev et al.,
2008). In that case, the reversed
component is of later origin, and the
mixed polarity interval contributes
to the normal chron C3An.1n. The
base of the PLG in the VDGB is
then also located roughly three pre-
cessional cycles above the base of
the Gilbert Chron.

Discussion

The recognition of an additional
PLG cycle in the SB together with
the re-interpretation of the paleo-
magnetic data of the Monticino sec-
tion indicates that the onset of the
MSC is located three precessional
cycles above the base of the Gilbert
Chron in both western (SE Spain)
and central (N Italy) Mediterranean
(Fig. 6).
Lugli et al. (2010) reconstructed a

robust stratigraphic framework of
the PLG unit, allowing bed-by-bed
correlation of each gypsum-shale
cycle. The proposed tuning with the
astronomical curves highlights a
strong climatic control at the preces-
sional and eccentricity scale in the
facies distribution, bed thickness and
stacking pattern.
Accordingly, the Perales andMonti-

cino sections can be precisely corre-
lated and constrained into this cyclos-
tratigraphic framework (Fig. 7).
According to earlier integrated

stratigraphic studies of the pre-MSC
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unit, the base of the Gilbert chron
falls in the upper part of cycle UA31
of the Perales section and is unambig-
uously correlated to the astronomical
curves (Krijgsman et al., 1999a,b,
2004; Sierro et al., 2001). The base of
the 1st PLG cycle, being located three
precessional cycles higher, at the top
of cycle UA34 (Fig. 6). Using the
most recent astronomical solution
(Laskar et al., 2004) an age of
5.969 Ma and 5.974 Ma can be
assigned respectively to the midpoint
of the 1st PLG cycle and to the mid-
point of the underlying dark organic-
rich shale interval. The beginning of
the MSC in the Mediterranean thus
has an age of 5.971 Ma.

Our new calibration leads to inter-
esting speculations about the climate
events accompanying the MSC-onset
based on the comparison with the
sedimentary record from the Atlantic
side. The Ain El Beida section (AEB;
Krijgsman et al., 2004) provides a
continuous deep marine record of
the 6.5–5.5 Ma interval that has been
studied in detail following an inte-
grated stratigraphy approach (bio-
stratigraphy, magnetostratigraphy,
stable isotope) and astronomically
tuned.
The calibration of the PLG cycles

to the AEB d18O curve (Van der
Laan et al., 2005) and to the global
sea level record (Miller et al., 2011)

is shown in Fig. 7. The Monte
Tondo section, located in the nearby
of Monticino, is the reference section
for the PLG (Lugli et al., 2010). It
shows that the PLG cycles 3-4-5,
characterized by the maximum thick-
ness in all the Mediterranean (Lugli
et al., 2010), are related to: i) a phase
of strong climate variability related
to a maximum of eccentricity and
associated greater amplitude of bor-
eal summer insolation, and ii) a
phase of global sea level high-stand
related to long-term obliquity cycles.
Starting at around 5.870 Ma (PLG
cycle 6) the onset of a cooling phase
and global sea level fall could be
responsible for the progressive reduc-
tion of the gypsum bed thickness and
the development of the branching
selenite facies, whose presence sug-
gests shallower water depth in the
evaporitic basins (Lugli et al., 2010).
Thus, the thickness of the PLG
cycles during a phase of reduced tec-
tonic activity could have been modu-
lated by global sea level variations.
It is worth noting that the first

gypsum was deposited at times of: (i)
an eccentricity minimum roughly
coincident with glacial stage TG32
(Van der Laan et al., 2005); (ii) a
strong peak in the Ti/Al ratio in
cycle AEB25 (van der Laan et al.,
2012).
This suggests that the MSC-onset

occurred during a time interval char-
acterized by glacial conditions in the
northern hemisphere and by arid cli-
mate in the gateway area (Northwest
Africa) in agreement with the pollen
record of southern Mediterranean
(Fauquette et al., 2006). These events
superimposed to the longer-term
tectonic restriction of the gateway
started since the Tortonian, were
likely responsible for triggering evap-
orative conditions in the marginal
basins of the Mediterranean Sea.
Our results indicate that: (i) the

interval encompassing MSC-onset is
devoid of erosional features or strati-
graphic hiatus related to major sea-
level drop in the Mediterranean; (ii)
in agreement to the evaporite facies
and stacking pattern (Lugli et al.,
2010), the Yesares Formation of Sor-
bas was deposited during the first
stage of the MSC. This allow to rule
out previous hypothesis (Riding
et al., 1999; Braga et al., 2006)
claiming that the Yesares Fm. was
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Fig. 7 Tuning of the Primary Lower Gypsum unit. According to the sedimentologic
and sequence stratigraphic interpretation suggested for the Primary Lower Gypsum
deposits (Roveri et al., 2008b; Lugli et al., 2010) the boundary between the banded
selenite and the branching selenite facies represents the aridity peak within each
single gypsum beds. Thus, it has been correlated with insolation minima.
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deposited after the complete desicca-
tion of the Mediterranean and the
development of a major unconfor-
mity in the marginal basins.

Conclusions

A detailed sedimentological, strati-
graphic and paleomagnetic revision of
two key-sections, Perales (Sorbas
basin) and Monticino (Vena del
Gesso basin), recording the transition
toward evaporative conditions in
marginal shallow-water settings
results in a refined age calibration of
the MSC-onset in the Mediterranean
at around 5.971 Ma and the removal
of uncertainties that prevented a more
accurate positioning of the MSC-
onset in marginal and deep basins.
This age refinement also suggests

that the MSC-onset was precondi-
tioned by the tectonically-driven
reduction of the hydrological
exchanges with the Atlantic ocean
and was finally triggered by glacial
conditions in the northern hemisphere
and by arid conditions in northern
Africa. In this oceanographic setting
the deposition of gypsum beds in
marginal basins was controlled by sea
level and insolation oscillations
modulated by eccentricity.
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